The Document Indexer Pipeline is a core component of the LN1 node that processes, indexes, and makes legal documents searchable within the DataHive ecosystem. This pipeline ensures efficient document processing, accurate indexing, and fast retrieval capabilities.
class IndexerPipeline:
def __init__(self):
self.document_processor = DocumentProcessor()
self.index_manager = IndexManager()
self.search_engine = SearchEngine()
self.metadata_indexer = MetadataIndexer()
class ContentExtractor:
def extract_content(self, document):
return {
'text': self.extract_text(),
'structure': self.analyze_structure(),
'citations': self.extract_citations(),
'metadata': self.extract_metadata()
}
interface IndexStructure {
document: {
id: string;
content: string;
metadata: object;
vectors: number[];
};
mappings: {
fields: string[];
analyzers: string[];
settings: object;
}
}
class IndexOptimizer:
def optimize_index(self):
return {
'segment_merge': self.merge_segments(),
'cache_warmup': self.warm_cache(),
'field_optimization': self.optimize_fields(),
'analyzer_tuning': self.tune_analyzers()
}
class QueryProcessor:
def process_query(self, query):
return {
'parsed_query': self.parse_query(),
'expanded_terms': self.expand_terms(),
'filters': self.apply_filters(),
'ranking': self.configure_ranking()
}
class PerformanceOptimizer:
def optimize_performance(self):
return {
'batch_processing': self.configure_batching(),
'memory_management': self.optimize_memory(),
'concurrent_indexing': self.manage_concurrency(),
'resource_allocation': self.allocate_resources()
}
class SystemIntegration:
def configure_integrations(self):
return {
'storage_system': self.connect_storage(),
'search_api': self.setup_search_api(),
'monitoring': self.configure_monitoring(),
'analytics': self.setup_analytics()
}
class IndexerMonitor:
def collect_metrics(self):
return {
'indexing_rate': self.measure_indexing_speed(),
'query_performance': self.measure_query_speed(),
'index_size': self.measure_index_size(),
'resource_usage': self.track_resources()
}
class ErrorHandler:
def handle_error(self, error):
return {
'error_type': self.classify_error(error),
'recovery_action': self.determine_action(error),
'notification': self.notify_stakeholders(error),
'logging': self.log_error(error)
}
class IndexMaintenance:
def maintain_index(self):
return {
'optimization': self.optimize_index(),
'cleanup': self.cleanup_old_segments(),
'backup': self.backup_index(),
'health_check': self.verify_index_health()
}