Legalese-Node-LN1

Validation Pipeline

Overview

The DataHive validation pipeline ensures data quality and reliability through a multi-layered verification process integrated with other pipeline components. This system works in conjunction with the indexing, curation, and processing modules to maintain data integrity across the network.

Core Components

Initial Validation

class ValidationProcessor:
    def __init__(self):
        self.source_validator = SourceValidator()
        self.content_checker = ContentChecker()
        self.format_validator = FormatValidator()

    async def validate_entry(self, document):
        source_valid = await self.source_validator.verify(document)
        content_valid = self.content_checker.validate(document)
        format_valid = self.format_validator.check(document)
        return self.generate_validation_report(source_valid, content_valid, format_valid)

Pipeline Integration

Pre-Processing Stage

Processing Stage

Post-Processing Stage

Validation Workflow

Document Intake

Quality Assurance

Consensus Phase

Integration Points

Indexing Pipeline

Curation System

Storage Layer

Quality Metrics

Performance Indicators

Validation Thresholds

Note: This documentation is subject to updates as the validation system evolves.