Validation Pipeline
Overview
The DataHive validation pipeline ensures data quality and reliability through a multi-layered verification process integrated with other pipeline components. This system works in conjunction with the indexing, curation, and processing modules to maintain data integrity across the network.
Core Components
Initial Validation
class ValidationProcessor:
def __init__(self):
self.source_validator = SourceValidator()
self.content_checker = ContentChecker()
self.format_validator = FormatValidator()
async def validate_entry(self, document):
source_valid = await self.source_validator.verify(document)
content_valid = self.content_checker.validate(document)
format_valid = self.format_validator.check(document)
return self.generate_validation_report(source_valid, content_valid, format_valid)
Pipeline Integration
Pre-Processing Stage
- Document format verification
- Source authenticity checks
- Content completeness validation
- Duplicate detection
Processing Stage
- Content analysis validation
- Reference verification
- Metadata validation
- Structure verification
Post-Processing Stage
- Cross-reference validation
- Consistency checks
- Quality scoring
- Version control
Validation Workflow
Document Intake
- Initial format verification
- Structure validation
- Metadata extraction
- Content analysis
Quality Assurance
- Text validation
- Reference checking
- Consistency verification
- Completeness assessment
Consensus Phase
- Node distribution
- Peer validation
- Score aggregation
- Final approval
Integration Points
Indexing Pipeline
- Pre-indexing validation
- Format standardization
- Schema compliance
- Reference integrity
Curation System
- Quality metrics tracking
- Content accuracy scoring
- Source reliability rating
- Processing success rate
Storage Layer
- Version control validation
- Change history verification
- Integrity checks
- Redundancy validation
Quality Metrics
- Content accuracy score
- Source reliability rating
- Processing success rate
- Validation consensus level
Validation Thresholds
- Minimum consensus requirements
- Quality score thresholds
- Performance benchmarks
- Time constraints
Note: This documentation is subject to updates as the validation system evolves.