Data Processing Pipeline
Overview
The DataHive processing pipeline handles the transformation of raw legal data into structured, validated knowledge through a series of coordinated operations. This system works in conjunction with the indexing, curation, and validation modules.
Core Components
Processing Engine
class ProcessingEngine:
def __init__(self):
self.document_processor = DocumentProcessor()
self.pattern_analyzer = PatternAnalyzer()
self.knowledge_extractor = KnowledgeExtractor()
async def process_document(self, legal_data):
parsed = await self.document_processor.parse(legal_data)
patterns = self.pattern_analyzer.detect(parsed)
return self.knowledge_extractor.extract(patterns)
Processing Stages
Document Intake
- Raw document collection
- Format detection
- Initial preprocessing
- Quality assessment
Content Analysis
- Text extraction
- Structure analysis
- Metadata generation
- Reference detection
- Legal concept identification
- Relationship mapping
- Citation extraction
- Context analysis
Integration Points
Indexing System
- Document classification
- Content categorization
- Reference mapping
- Version tracking
Validation Layer
- Quality verification
- Accuracy checks
- Consistency validation
- Error detection
Storage System
- Data persistence
- Version control
- Change tracking
- Backup management
Quality Controls
- Processing speed
- Accuracy rates
- Error frequency
- Resource utilization
Quality Assurance
- Automated testing
- Manual review triggers
- Performance monitoring
- Continuous improvement
Note: This documentation is subject to updates as the processing system evolves.