The Precedent Graph system models legal relationships and citations as a directed graph, enabling sophisticated legal analysis and precedent tracking within the LN1 node network.
class PrecedentGraph:
def __init__(self):
self.nodes = {} # Legal documents
self.edges = {} # Citations and relationships
self.metadata = MetadataManager()
self.analyzer = GraphAnalyzer()
interface DocumentNode {
id: string;
metadata: {
title: string;
jurisdiction: string;
date: timestamp;
court: string;
status: string;
};
relationships: {
citations: string[];
references: string[];
overruled: string[];
}
}
class CitationAnalyzer:
def analyze_citations(self, document):
return {
'forward_citations': self.get_citing_documents(),
'backward_citations': self.get_cited_documents(),
'citation_strength': self.calculate_importance(),
'citation_context': self.extract_context()
}
class PathAnalyzer:
def analyze_precedent_path(self, start_node, end_node):
return {
'shortest_path': self.find_shortest_path(),
'all_paths': self.find_all_paths(),
'path_strength': self.calculate_path_strength(),
'key_intermediates': self.identify_key_nodes()
}
class GraphVisualizer:
def generate_visualization(self, graph_subset):
return {
'layout': self.calculate_layout(),
'node_styling': self.style_nodes(),
'edge_styling': self.style_edges(),
'interactive_elements': self.add_interactivity()
}
class DocumentProcessor:
def process_document(self, document):
return {
'extracted_citations': self.extract_citations(),
'relationship_mapping': self.map_relationships(),
'context_analysis': self.analyze_context(),
'metadata_enrichment': self.enrich_metadata()
}
class ResearchTools:
def analyze_precedent(self, case_id):
return {
'authority_score': self.calculate_authority(),
'citation_network': self.map_network(),
'temporal_analysis': self.analyze_timeline(),
'jurisdiction_mapping': self.map_jurisdictions()
}
class GraphOptimizer:
def optimize_operations(self):
return {
'index_optimization': self.optimize_indices(),
'query_caching': self.implement_cache(),
'batch_processing': self.optimize_batches(),
'memory_management': self.manage_memory()
}
class GraphAPI:
def query_endpoints(self):
return {
'/graph/search': self.handle_search,
'/graph/analyze': self.handle_analysis,
'/graph/visualize': self.handle_visualization,
'/graph/update': self.handle_updates
}
class GraphMonitor:
def track_metrics(self):
return {
'query_performance': self.measure_query_speed(),
'graph_size': self.measure_graph_size(),
'update_frequency': self.track_updates(),
'usage_patterns': self.analyze_usage()
}
Remember to update this documentation as new features and improvements are implemented in the precedent graph system.